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Efficient Composite Designs with Small Number of Runs
by

Dr. Asit P. Basu
© - Department of Statistics
i 328 Math Sciences
University of Missouri

0 Summary

A new method of constructing composite designs using the robustness property against
deletion of runs (points) is given. Composite designs are presented with small number of
runs. These designs are more efficient in terms of both prediction of response and estimation

of parameters, than their competitors that are available in the literature.
Short Running Title: Composite Designs

Key Words: Deletion of Points, Factorial Points, Orthogonal, Response Surface, Robustness,

Unbiasedness.

AMS Subject Classifications: Primary and Secondary 62K15, 62J05

1 Introduction

In the study of dependence of a response variable y on k explanatory variables, coded
as Zj,...,Tx, the unknown response surface is approximated by a first or a second order
polynomial in a small region with the center being the point of maximum interest. If the
first order model gives a significant lack of fit indicating the presence of a surface curvature, a
second order response surface model is then fitted. The N runs (or points) in the design are

(Zu1,--.,Tuk) and the observations are y(zy1,. .., ZTuk) = Yu, u =1,..., N. The expectation

R R

Stk ratieed S0l v e ERLES

Eof :

b
e
Bl
i~
I
IS
E.
il“
b
E:_
T
P
Lo
; N
|
[N
[
y
.




of y, under the second order model is

k
i=

kok
Bz 4+ 3> Bijzuizj, (1)
1

i=1j5=1
i<y

k
E(y.) =B, + Zﬂi-’rui +
i=1

where the intercept f,, the linear coefficients f;, the pure quadratic coefficients S; and the
interaction coefficients §;; are unknown constants. The y,’s are assumed to be unc?rrelated
with the variance o?, an unknown constant. The number of #’s in (1) is 1 + 2k + (’;)
For a second order design with N points (z41,...,Zu),u = 1,..., N, all B’s are unbiasedly

estimable.

A special second order design, called composite design (CD), consists of F' factorial points
(FP’s) which are a fraction of 2* points (£1,...,=%1), 2k axial points (AP’s) (+aq,...,0),...,
(0,...,%a), a is a given constant and n,(> 0) center points (CP’s) (0,...,0). The total
number of points is N = F + 2k + n,. Box and Wilson (1951) introduced such designs.
Box and Hunter (1957) suggested FP’s as the complete set of 2*¥ points or an orthogonal
resolution V plan (i.e, the plan that permits the unbiased estimation of 8, + Y5, B, B:’s
and fB;;’s under (1) and, moreover, the estimators are uncorrelated). The CD’s with such
FP’s give the variance of the predicted response dependent on the point only through its
distance from the origin. This variance structure is achieved at the cost of a large number
of points, particularly FP’s. Efforts are then being made for reducing the number of FP’s.
Hartley (1959) pointed out that FP’s need not be of resolution V but could be as low as of
resolution III plan (i.e., the plan that permits the unbiased estimation of 8, + Y%, i and
Bi’s assuming f;;’s are known) with an additional condition that the unbiased estimation
of Bi;’s is possible assuming the other A’s are known. Draper and Lin (1990) named such
FP’s as resolution IIT*. Hartley (1959) presented resolution III* FP’s as regular fractions
and Westlake (1965) presented FP’s as irregular fractions of 2* factorials. Draper (1985),
Draper and Lin (1990) gave resolution IIT* FP’s using the projection properties of Plackett

and Burman orthogonal resolution III fractions of 2* factorials.
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In this paper, a new method of constructing CD’s is given by introducing first a sub-
model of (1), presenting orthogonal FP’s under the submodel and finally, reducing the num-
ber of FP’s using the idea of robustness of designs against deletion of points [see Ghosh
(1979)]. New CD’s constructed by this method, can be made minimal in the number of
FP’s. They are then compared with the available CD’s in the literature. ~Comparisons
are made with respect to the Tra{Lce, Determinant and Maximum Characteristic Root of the
variance-covariance matrix of the least squares estimators of f#’s and also with respect to
the average of the variances of predicted responses in a spherical region about the center.

Our designs perform significantly better over the designs that are available in the literature.

Results presented in this paper are striking, useful and valuable.

2 Factorial Points

Observations at AP’s permit the unbiased estimation (UE) of §; and 8, + a?fy, t =
1,...,k. The CP observations provide the UE of §,. For a second order CD, observations
at FP’s must at least allow the UE of 8, + ¥F, B;; and Bijy ¢ < jyt,3 = 1,...,k, given
that the estimators of fBi,..., B are available from AP’s. When there is no center point
observation (i.e., n, = 0), @ can not be equal to k'/2. In view of this, the following submodel

of (1) is introduced for the choice of FP’s.

ko k
E(yu)=ﬂo+ZZﬂ;j$u;$uj, u = 1,...,F. (2)
‘_1'1<J,7'—1 ‘
In matrix notation,
E(y_) = Xﬁ, V(_y_) = 021, (3)

where y(F x 1) is the vector of observations at FP’s, f(p x 1),p =1+ (g), is the vector of
B’s in (2) and X (F x p) is the design matrix based on FP’s. It is important to note that a

CD with a > 0 for n, > 0 and in addition, a # k/? for n, = 0 is of second order if and only
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if the UE of all A’s under (2) is possible (i.e., Rank X = p).

A set of FP’s is said to be orthogonal if X'X is a diagonal matrix and is denoted by
OFP’s. FP’s which are not OFP’s are called nonorthogonal FP’s (NOFP’s). Notice that if

one FP is negative of another FP, then the corresponding rows of X are identical.

Let F,, be a set of FP’s with the corresponding vector of observations Yy, w=12, and

B = (_ﬂ_;,ﬁ;,_é’;), where B.(p; x 1), i =1,2,3, with p; + p; + p3 = p. Denote
E(Ew) = le_ﬂ_l + Xw2é2 + Xw3_3, (4)
where Xoi(Fy X pi),w=1,2,i=1,2,3. Let F; and F; FP’s be such that

X2 = X3, X22 = ~X23, P2 = ps. (5)

Example 1. For k = 8, the 64 FP’s satisfying 17,23 = 747526 = —1 form OFP’. For
F, = 32 FP’s satisfying 72923 = 742526 = —1, 7,247,725 = 1 and F; = 32 FP’s satisfying
T1T2T3 = T4T5Te = T1T4T7Tg = —1, ﬁ’z = (B14, P17, Baz) and é; = (Brs; Pas; Prs), p2 = pa =
3, pr = 23, the conditions in (5) in fact hold. The following result is very useful in the

selection of FP’s,

Theorem 1. If for F; FP’s Rank [Xi1,X12) = p; + p; and for F, FP’s Rank X,, = p2 then

for (F1 + Fz) FP,S,
Xn X2 Xis

Rank = p.

X X2 Xoa
Proof. There exists 2 p; X p; submatrix X3, of X5, with Rank X3, = p,. The matrix

obtained by taking the corresponding p, rows of [Xa1, Xog, Xo3] is (X351, X530, X35]. It now

remains to prove that
Xn X2 Xis

Rank = p.

7 * * *
A21 X22 X23
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Let if possible that rank be (p—s), where s > 0. There exists an ((Fy+F,—p+3s) X (Fi+ 1))
matrix [Di, D7} with rank equals to Fy + F; — p + s and satisfying

Xu X2 Xis
= 0.

[DI,DZ]

Xn Xn X3
Thus D1 X1z + D, X3, = 0 and, moreover, Dy X13 + D2 X33 = D1X12 — D2 X3, = 0 (since,
from (5), X12 = Xi3 and X3, = —X3;). This implies that D;X3, = 0 and consequently
D, = 0. Then Rank D, = (Fy + F; —p + s) > (F1 — p1 — p2) and this is impossible since

Rank [X11, X12, X13] = p1 + p2. This completes the proof.

Example 2. For k = 8 and F} = 32 FP’s satisfying z, 2,25 = £4252¢ = —1 and ;742778 = 1,

Rank [Xi1,X12] = p1 +p2 =23+ 3 =26. From (5), X22 = —X23 and the columns of X3

correspond to Pis, PBss and Prs. It is now clear that the condition Rank Xz, = p, = 3 in
Theorem 1 can be achieved by choosing 3 points from 32 points satisfying 12,73 = z4757¢ =
71742723 = —1 so that the columns for z;,z4 and z7 are independent. For illustration, one
such choice for F; =3 FP’s is

-11 1 1 -11 11

11 -1 -1 11 11

11 -1 1 -11 =11

A general series of Fy and F; FP’s satisfying (5) is given below.

I. k=3t—1, t > 2 and t is an integer.

The F,, u = 1,2, FP’s satisfying
T1TyT3 = ... = T3_5T3-4T3-3 = —1, 1 2 2,

T1T4T7T8 = ... = Ty43[t/3]-5Tt43(t/3]~2T3t-2T3t—-1 = (3 - 2“),t >3,




II. k=3t, 3t+1,t > 1 and ¢t is an integer.

The F,,u = 1,2, FP’s satisfying
T1T2T3 = ... = Tap-pTy—1T3 = —1, 1 2 1,

LT1T4T7T8 = ... = Tt43[t/3]-5T143[t/3]-2T3t-2T3t—-1 = (3 - 2”),t >3, (6)

where [t/3] is the greatest integer in (¢/3).

There are some variations of the general series presented in (6). For k = 10,11 and 12, the
F., u=1,2, FP’s satisfying
T1T2T3 = IT4T5Te = T7TT9 = T10T11T12 = —1,

T1T4T7T10 = ToT5T8T11 = (3 - 2U) (7)
The plans in (7) have smaller values of p, in comparison to the plans given in (6).

The other plans for £ = 4,5 and 6 are given below for F' FP’s under (3).

k =4, zy=-1,F =8
k=5, Planl =zyz9z32425 =1,
Plan II. z5 = -1,
F =16 for both plans.
k=6, T1T2232425 = 6 = —1, F = 16. (8)

The (F1 + F2) FP’s in (6) and (7) and the F FP’s in (8) form OFP’s under (3). It follows
from (6) that the F; and F, FP’s for k = 3t 4 1, are in fact twice of their counterparts for

k =3t. The F,, u=1,2, FP’s for k = 3¢ + 1, can be obtained from the corresponding FP’s .

for k = 3t by adding 1 and —1, respectively in the last position.
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3 Construction of Minimal Plans

The number of FP’s discussed in Section 2 is in fact large. The idea of robustness of
FP’s against deletion of points [Ghosh (1979)] is now used in reducing the number of FP’s.

The idea turns out to be extremely powerful.
{

Definition. A set of F' FP’s is said to be robust against deletion of t (a positive integer)
points if the parameters in 8 under (3) are still unbiasedly estimable with the remaining

(F —t) FP’.

For a robust set of F FP’s, the rank of the resulting matrix remains p when t rows of X
corresponding to t points are deleted. The following result of Ghosh (1979) is instrumental

in determining the robustness of FP’s.

Theorem 2. Let Z((F — p) x F) be a matrix with Rank Z = (F—p)and ZX =0. A
necessary and sufficient condition for a set of F’ FP’s to be robust against deletion of ¢ points

is that Rank Z* = t, where Z*((F — p) x t) is the submatrix of Z corresponding to t points.

The following corollary is very useful in determining robustness by exploiting the design

structure.

Corollary. Let X’ = [X},X3] where X;(f1 X p), Xo(f2 x p), fi+ fo=F and X3 X; = 0.
If the set of f; FP’s is robust against deletion of t;,i = 1,2, points, then the set of F’ FP’sis

robust against deletion of (2, +¢,) points and vice versa.
Proof. Note that Rank X = Rank X; + Rank X; and the rest is clear.

Plans are now constructed for 4 < k < 10.




3.1 (k=4).

Two plans with 8 PF’s in (6) and (8) are robust against deletion of any one point. The
resulting plans with 7 FP’s are denoted by Plan 4.1 and Plan 4.2. There are 8 possible
plans for each of Plan 4.1 and Plan 4.2.

f

3.2 (k=5).

Consider F} = 16 FP’s given in (6). Note that p, = p; = 0. The rows of the matrix
Z(5 x 16) in Theorem 2 Correspond to T4, Ts, T1ZT4Ts, T2T4Ts, T3T4Ts and the columns
correspond to 16 points. It follows from the structure of Z that the 5 points with exactly
one of the z;’s equal to 1 or —1, can be deleted. The resulting 11 points satisfy Rank X =11
under (3).

Consider F' = 16 FP’s given in (8) satisfying z,z,x3z42z5 = —1. The 11 points obtained

by deleting the 5 points with exactly one of z,’s equal to —1, satisfy Rank X = 11.

Similarly consider F' = 16 FP’s given in (8) satisfying 25 = —1. The 11 points obtained

by deleting the 5 points with exactly one of z;’s equal to 1 or —1, also satisfy Rank X = 11.

(9)

Tt




Another set of 11 FP’s is also given below.
-1 -1 -1 -1 -1]

1 -1 -1 -1 1

The above 4 plans with 11 FP’s give identical X matrix under (3). The plan given in
(9) is named as Plan 5.1.

3.3 (k=6).

The plans with 16 FP’s given in (6) and (8), are called Plan 6.1 and Plan 6.2, respectively.

These plans have the minimum number of points under (3).




Table 1
Efficiency Comparison for k = 4.

ng| a | Plan | MCR T D V(r) V(r) V(r)
r=11|r= \/5 r = \/E

0 1 141 4.878 | 10.194 | 1.668e-09 | 10.347 | 23.194 | 70.139
4.2 1.473 7.194 | 1.657e-09 | 9.410 | 19.444 | 55.139

1 1 141 4589 | 9.843 | 1.287e-09 | 10.345 | 24.131 | 73.262
4.2 | 1.448 | 7.035 | 1.277e-09 | 9.409 | 20.387 | 58.284

NCAES! 1.259 | 3.709 | 1.716e-15 | 13.151 | 12.771 | 19.417

4.2 1.255 | 3.523 | 1.810e-15 | 13.089 | 12.521 | 18.417

2 1 141 4.414 | 9.626 | 1.052e-09 | 10.535 | 25.237 | 76.818
4.2 1.436 | 6.935 | 1.038e-09 | 9.582 | 21.427 | 61.576

VEk |41 0.988 | 3.084 | 8.602e-16 | 8.041 | 9.673 | 19.214

4.2 0.783 | 2.898 | 9.081e-16 | 7.974 | 9.408 | 18.151




Table 2
Efficiency Comparison for k = 5.

no| a | Plan | MCR T D V(r) V(r) V(r)
r=1 r=\/§ r=\/E

0 1 151 1.466 8.582 | 1.529e-15 | 12.569 | 27.215 | 107.236
5W | 8.798 | 17.922 | 3.590e-15 | 15.687 | 39.664 | 185.937

5D.1 | 2.193 | 12.362 | 1.530e-15 | 13.812 | 32.263 '135.896

5D.21 1.655 | 10.372 | 1.478e-15 | 13.153 | 29.611 | 119.819

2 15.1 7.196 9.872 | 3.693e-22 | 86.340 | 62.111 | 40.007
5W | 8.993 | 13.749 | 8.197e-22 | 99.125 | 73.250 | 64.625

5D.1| 5.034 8.743 | 3.542e-22 | 63.743 | 49.056 | 45.410

5.D.2 | 5.415 8.601 | 3.681e-22 | 67.528 | 50.861 | 41.694

111 (51 1.461 8.521 | 1.273e-15 | 12.752 | 28.247 | 112.036
5W | 8.686 | 17.757 | 3.010e-15 | 15.967 | 41.150 | 193.559

5D.1] 2.193 | 12.334 | 1.340e-15 | 14.121 | 33.570 | 142.321

5D.21 1.655 | 10.339 | 1.277e-15 | 13.418 | 30.785 | 125.443
VEk|5.1 1.202 | 3.603 | 3.105e-24 | 18.413 | 17.264 | 28.441
5W | 2.026 | 5.475 | 5.853e-24 | 19.064 | 19.878 | 44.821

5D.1 ] 1.202 | 4.429 | 4.406e-24 | 18.775 | 18.530 | 35.667

5.D.2 | 1.202 | 4.008 | 3.946e-24 | 18.613 | 17.922 | 32.022

2 15.1 1.086 | 3.763 | 5.664e-23 | 15.833 | 15.672 | 31.425
5W | 2512 | 6.133 | 1.082e-22 | 16.840 | 19.014 | 51.936

5D.1| 0.998 | 4.707 | 7.023e-23 | 15.704 | 16.996 | 40.283

: 5D.2 | 1.019 | 4.204 | 6.893e-23 | 15.629 | 16.297 | 35.790
2 1 5.1 1.458 | 8.477 | 1.104e-15 | 13.015{ 29.331 | 116.896
5W | 8.606 | 17.636 | 2.503e-15 | 16.342 | 42.717 | 201.431

5D.1| 2.193 | 12.314 | 1.204e-15 | 14.487 | 34.914 | 148.754

5D.2 1 1.655 | 10.312 | 1.116e-15 | 13.745 | 32.000 | 131.080
Vk|5.1 0.602 | 3.003 | 1.555e-24 | 10.780 | 12.098 | 28.273
5W | 2.026 | 4.873 | 2.839e-24 | 11.461 | 14.831 | 45.398

5.D.1 | 0.609 | 3.828 | 2.171e-24 | 14.487 | 34.914 | 148.754

5D.21 0.602 | 3.408 | 1.976e-24 { 10.989 | 12.785 | 32.017

2 5.1 0.595 | 3.267 | 3.029e-23 | 10.228 | 12.197 | 31.965
5. W 2.433 | 5.589 | 5.811e-23 | 11.109 | 15.568 | 53.119

5D.11 0.706 | 4.260 | 3.705e-23 | 10.558 | 13.822 | 41.278

5D.2 ] 0.565 | 3.750 | 3.822e-23 | 10.379 | 13.038 | 36.564




Table 3

Efficiency Comparison for k£ = 6.

ng| « |Plan| MCR T D V(r) V(r) V(r)
: r=1 r=v2 | r= Vk
0 1 6.1 | 1.032 | 9.587 | 4.440e-25 | 16.211 35.444 | 176.900
6.2 | 1.032 | 9.227 | 4.397e-25 | 16.092 34.968 | 178.216
2°/% 1 6.1 |49.889 | 51.966 | 1.021e-34 | 907.747 | 669.274 | 142.893
6.2 | 78.443 | 80.402 | 1.060e-34 | 1414.564 | 1035.486 | 198.282
1 1 6.1 | 1.032 | 9.571 | 3.963e-25 | 16.501 36.505 | 183.189
6.2 | 1.032 | 9.191 |3.837e-25| 16.323 35.990 | 184.269
VEk | 6.1 | 1.168 | 3.181 |9.466e-37 | 24.635 22413 | 34.968
6.2 | 1.168 | 3.069 | 6.196e-37 | 24.503 22.106 33.523
22741 6.1 | 1.149 | 3.226 |2.352e-36 | 24.102 22.077 | 36.018
6.2 | 1.164 | 3.123 | 1.574e-36 | 24.066 21.756 | 34.458
2 1 6.1 1.032 | 9.558 | 3.576e-25 16.83 37.593 | 189.482
6.2 | 0.493 | 2.917 | 1.591e-34 | 11.473 13.781 43.875
Vi | 6.1 0.584 | 2.597 | 4.733e-37 | 13.984 14.686 34.674
6.2 | 0.585 | 2.486 | 3.103e-37 | 13.848 14.368 | 33.179
25741 6.1 | 0.582 | 2.659 | 1.191e-36 | 13.905 14.758 | 35.912
6.2 | 0.587 | 2.546 | 7.938e-37 | 13.768 14.393 | 34.326




Table 4
Efficiency Comparison for k = 7.

no | a | Plan MCR T D V(r) V(r) V(r)
r=1 = \/5 T = \/E
0 1 |71 5.512 | 16.298 | 4.907e-33 | 22.472 53.007 387.556
7.2 9.246 | 20.184 | 4.692e-33 | 23.886 58.608 | 448.182
TW 12.946 | 29.464 | 3.381e-31 | 27.260 72.179 625.412
7.DL.1 | 58.800 | 77.428 | 2.741e-31 | 44.701 | 141.865 | 1467.853
7.DL.2 | 24.485| 40.931 | 2.022e-31 | 31.430 88.799 | 820.326
26/4 | 7.1 13.232 | 17.672 | 1.470e-48 | 337.852 | 273.909 | 137.261
7.2 8.486 | 13.296 | 1.395e-48 | 220.443 | 180.273 | 120.216
W 27.740 | 33.611 | 1.041e-46 | 691.102 | 558.909 | 238.511
7.DL.1 | 15.293 | 26.865 | 8.256e-47 | 199.638 | 180.609 | 375.441
7.DL.2 | 10.871 | 21.521 | 6.534e-47 | 264.983 | 223.540 | 244.855
1 1 171 5.461 | 16.230 | 4.265e-33 | 22.785 54.212 397.247
. 7.2 9.246 | 20.173 | 4.269e-33 | 24.296 60.047 460.609
W 12.814 | 29.307 | 3.025e-31 | 27.668 73.798 639.998
7.DL.1 | 58.800 | 77.418 | 2.505e-31 | 45.689 145.615 | 1508.606
7.DL.2 | 24.433 | 40.864 | 1.842e-31 32.018 90.994 842.064
vk | 7.1 2.211 5.790 | 1.111e-48 | 32.817 32.804 95.299
7.2 2.351 6.224 | 1.787e-48 | 33.064 33.591 103.159
W 1.926 7469 | 4.443e-47 | 33.491 35.403 | 126.286
7.DL.1 | 16.170 | 21.684 | 1.127e-46 | 38.840 56.695 | 386.177
7.DL.2 | 7.628 12.736 | 6.905e-47 | 35.467 43.276 222.437
2674 1 7.1 2.208 5.540 | 1.13%-49 | 30.782 31.390 92.410
7.2 2.211 5.810 | 1.640e-49 | 29.711 30.850 97.652
W 1.879 7.081 | 4.193e-48 | 32.691 34.876 120.560
7.DL.1 | 15.286 | 20.390 | 1.084e-47 | 34.704 52.245 364.600
7.DL.2 | 7.363 12.121 | 6.581e-48 | 32.605 40.718 213.040
2 1 |71 5.419 | 16.178 | 3.969e-33 | 23.141 55.454 407.083
7.2 9.246 | 20.164 | 3.907e-33 | 24.735 61.508 473.040
W 12.708 | 29.182 | 2.751e-31 | 28.125 75.472 654.981
7.DL.1| 58.800 | 77.409 | 2.292e-31 | 46.706 | 149.388 | 1549.362
7.DL.2 | 24.391 | 40.807 | 1.660e-31 | 32.640 93.221 863.930
vk | 7.1 2211 5.217 | 5.466e-49 | 18.679 22.148 96.340
7.2 2.351 5.652 | 8.937e-49 | 18.934 22.956 | 104.411
W 1.926 6.897 | 2.221e-47 | 19.371 24.817 128.164
7.DL.1 | 16.170 | 21.113 | 5.644e-43 | 24.866 46.684 395.079
7.DL.2 | 7.628 12.165 | 3.456e-47 | 21.401 32.903 226.913
26/4 1 7.1 2.186 5.035 | 5.941e-50 { 18.072 21.535 92.825
7.2 2.211 5.343 | 8.731e-50 | 17.878 21.771 98.628
W 1.804 6.528 | 2.139e-48 | 19.076 24.274 121.153
7.DL.1 | 15.286 | 19.935 | 5.806e-48 | 23.331 44.025 372.918
7.DL.2 | 7.351 11.623 | 3.467e-48 | 20.438 31.530 216.696
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Table 5
Efficiency Comparison for k = 8.

ng| a | Plan | MCR T D V(r) | V(r) V(r)
r=11{r= \/§ r = \/l_c
0] 1 8.1 4.507 | 20.696 | 1.511e-44 | 28.511 | 68.598 | 640.190
8.2 4.454 | 21.007 | 1.436e-44 | 28.633 | 68.993 | 635.767
8.3 4.456 | 21.043 | 1.707e-44 | 28.645 | 69.040 | 636.517
8.4 | 4.455 | 21.038 | 1.419e-44 | 28.645 | 69.040 | 636.517
8.DL.1| 9.047 | 29.812 | 4.568e-43 | 31.934 | 82.196 | 846.954
111 8.1 | 4.505 | 20.648 | 1.381e-44 | 28.869 | 69.885 | 653.340
8.2 | 4.454 | 21.000 | 1.336e-44 | 29.038 | 70.349 | 649.878
8.3 4.456 | 21.035 | 1.568e-44 | 29.050 | 70.396 | 650.642
8.4 4.455 | 21.032 | 1.326e-44 | 29.050 | 70.397 | 650.644
8.DL.1| 9.047 | 29.802 | 4.223e-43 | 32.411 | 83.841 | 865.722
VE| 81 1.212 | 6.047 | 7.592e-64 | 41.226 | 40.897 | 132.250
8.2 1.141 | 6.286 | 1.191e-63 | 41.400 | 41.400 | 138.000
8.3 1.126 | 6.260 | 1.074e-63 | 41.391 | 41.364 | 137.425
8.4 1.136 | 6.291 | 1.111e-63 | 41.403 | 41.412 | 138.192
8.DL.1 | 1.956 | 8.756 | 4.616e-62 | 42.338 | 45.166 | 198.415
2|1 8.1 4.504 | 20.608 | 1.272e-44 | 29.259 | 71.200 | 666.615
8.2 | 4.454 | 20.994 | 1.242¢-44 | 29.467 | 71.722 | 663.992
8.3 4.456 | 21.029 | 1.462e-44 | 29.479 | 71.771 | 664.769
8.4 4.455 | 21.025 | 1.227e-44 | 29.479 | 71.771 | 664.772
8.DL.1 | 9.046 | 29.793 | 3.885e-43 | 32.912 | 85.505 | 884.496
VE| 81 1.212 | 5.485 | 3.802e-64 | 23.078 | 26.707 | 133.558
8.2 1.141 | 5.724 | 5.962e-64 | 23.255 | 27.221 | 139.433
8.3 1.089 | 5.698 | 5.379-64 | 23.246 | 27.184 | 138.846
8.4 1.135 | 5.728 | 5.500e-64 | 23.258 | 27.233 | 139.629
8.DL.1 | 1.956 | 8.194 | 2.310e-62 | 24.214 | 31.069 | 201.162




Table 6
Efficiency Comparison for k = 9.

np| a | Plan | MCR T D V(r) V(r) V(r)
r=1 r= \/§ r= \/E
0 1 9.1 1.873 | 17.967 | 2.486e-58 | 32.383 74.351 | 746.289
9.2 2.755 | 18.965 | 2.140e-58 | 32.767 75.889 | 777.443
9.3 3.946 | 20.151 | 2.182e-58 | 33.224 77.716 | 814.438
94 4.329 | 20.276 | 2.023e-58 | 33.272 | 77.908 | 818.332
9.DL.1 | 60.213 | 97.206 | 6.975e-56 | 62.861 | 196.261 | 3214.621
2774 9.1 2.895 | 8.239 | 1.68%-83 | 113.013 | 103.383 | 197.908
9.2 2.866 | 9.236 | 1.461e-83 | 113.398 | 104.921 | 229.062
9.3 3.962 [ 10.424 | 1.382e-83 | 113.854 | 106.748 | 266.057
9.4 4.986 | 10.552 | 1.572e-83 | 113.902 | 106.941 | 269.952
9.DL.1 | 13.807 | 27.932 | 5.415e-81 | 106.562 | 122.140 | 819.291
1 1 9.1 1.873 | 17.960 | 2.287e-58 | 32.757 75.532 | 759.839
9.2 2.755 | 18.959 | 1.983e-58 | 33.148 77.099 | 791.565
9.3 3.946 | 20.145 | 2.017e-58 | 33.613 78.959 | 829.232
9.4 4.328 | 20.269 | 1.871e-58 | 33.662 79.153 | 833.166
9.DL.1 | 60.213 | 97.200 | 6.533e-56 | 63.789 | 199.657 | 3273.031
vk 9.1 1.613 | 6.873 | 1.416e-81 | 50.935 | 51.013 | 195.564
9.2 2.714 7.971 | 1.293e-81 } 51.366 52.735 | 230.433
9.3 3.927 1 9.155 | 1.617e-81 | 51.827 | 54.582 | 267.838
94 3.636 8.706 | 1.345e-81 | 51.653 53.884 | 253.698
9.DL.1 | 14.948 | 27.989 | 6.016e-79 | 59.203 84.086 | 865.279
2774 9.1 1.662 | 6.327 | 5.082e-84 | 37.336 | 40.060 87.841
9.2 2.717 7.409 | 4.386e-84 | 37.761 | 41.758 222.226
9.3 3.929 | 8.588 | 4.149e-84 | 38.223 | 43.608 259.672
9.4 3.777 | 8.234 | 4.732e-84 | 38.083 | 43.047 248.312
9.DL.1 | 13.805 | 25.998 | 1.784e-81 | 43.582 | 69.630 646.342
2 1 9.1 1.873 | 17.957 | 2.191e-58 | 33.150 76.730 | 773.391
9.2 2.755 | 18.954 | 1.850e-58 | 33.549 78.324 | 805.688
9.3 3.946 | 20.141 | 1.906e-58 | 34.022 80.218 | 844.028
94 4.327 | 20.264 | 1.769e-58 | 34.071 80.414 | 848.004
9.DL.1 | 60.213 | 97.193 | 6.096e-56 | 64.737 | 203.070 | 3331.446
vk 9.1 1.613 6.318 | 7.088e-82 | 28.283 | 32.813 197.462
9.2 2.714 7.416 | 6.475e-82 | 28.721 | 34.566 232.953
9.3 3.927 8.599 | 8.089e-82 | 29.191 | 36.446 271.027
94 3.636 | 8.151 | 6.732e-82 | 29.013 | 35.736 256.634
9.DL.1 | 14.948 | 27.435 | 3.015e-79 | 36.699 | 66.476 879.136
2774 9.1 1.620 5.990 | 2.987e-84 | 24.049 | 29.071 188.742
9.2 2.714 7.086 | 2.578e-84 | 24.487 | 30.823 224.219
9.3 3.927 | 8.264 | 2.429e-84 | 24.957 | 32.703 262.294
9.4 3.653 7.826 | 2.792e-84 | 24.780 | 31.996 247.981
9.DL.1 | 13.805 |- 25.617 | 1.069-81 | 31.334 | 59.890 822.696

i
i
1
i
2
3
i
[
o
I




References

Box, G. E. P. and Wilson, K. B. (1951). On the experimental attainment of optimum

conditions. Journal of the Royal Statistical Society, Ser. B, 13, 1—45.

Box, G. E. P. and Hunter, J. S. (1957). Multi-factor experimental designs for exploring

response surfaces. Annals of Mathematical Statistics, 28, 195—241.

Box, G. E. P. and Draper, N. R. (1987). Empirical model-building and response surfaces.
John Wiley & Sons, New York.

Draper, N. R. (1985). Small composite designs. Technometrics, 27, 173—180.

Draper, N. R. and Lin, D. K. J. (1990). Small response-surface designs. Technometrics,
32, 187—194.

Ghosh, S. (1979). On robustness of designs against incomplete data. Sankhya 40, Ser. B,
Pts 3 and 4, 204—208.

Hartley, H. O. (1959). Smallest composite designs for quadratic response surfaces. Bio-

metrics, 15, 611-624.

Khuri, A. 1. and Cornell, J. A. (1987). Response surfaces, designs and analyses. Marcel
Dekker, Inc., New York.

Plackett, R. L. and Burman, J. P. (1946). The design of optimum multifactorial experiments.
Biometrika, 33, 305—325.

Westlake, W. J. (1965). Composite designs based on irregular fractions of factorials. Bio-
metrics, 21, 324—336.




APR-B4-1895 ©S:26 DTIC , 783 274 9278 P.83/84

PI Name (Last First MI) Basu, AsitP.
Institution University of Missouri-Columbia

Contract/Grant No. F49620-92-J-0371

A. Publications in peer-reviewed professional journals and refereed book chapters during the
reporting period, 1 October 1992 through 30 September 1593.
Book Edited:
Basu, Asit P., Editor,
ADVANCES IN RELIABILITY, North-Holland, Amsterdam, 1993.

Book Chaptets: '

1. Klein, John P. and Goel, Prem K., Editors, Survival Analysis: State of the Art, Kluwer
Academic Publishers, Dordrecht, 1992.
eBasu, A. P., Life Testing and Reliability Estimation with Asymmetric Loss Function.

2. Sen, Pranab K. and Salama, Ibrahim A., Editors, Order Stadstics and Nonparametrics:
Theory and Applications.

eBasu, A. P., On a test for exponendaliry against Monotone Failure Rates.

3. Goel, Prem, K. and Iyengar, N. S., Editors, Bayesian Analysis in Statstics and
Econometrics, Springer-Verlag, New York, 1992.

*Basu, A. P., Bayesian Approach to Some Problems in Life Testing and Reliability
Estimation.

4. Basu, A. P., Editor, Advances in Reliability, North-Holland, 1993.

eBasu, A. P., Characterizations of a Family of Bivariate Exponental Distributions.
5. Basu, A. P, Editor, Advances in Reliability, North-Holland, 1993.

eBasuy, A.‘ P., Bayesian Reliability of Stress-Strength Systems.

6. Cothern, Richard C. and Ross, Phillip N, Editors, Environmental Statistics Assessment
and Forecasting.

eBasu, A. P., Some Problems of “Safe Dose” Estimation.




APR-84-1995 ©39:26 DTIC 783 274 9270

B. Number of additional researchers working with the Principal Investgator

Faculty one, A. P. Basu

Postdocs 0
Graduate Students 1
Other SR

C. Professional honors received by all of the above listed co;;u-ibutors 7
Asit P. Basu was elected Fellow of the following sociedes:

American Association for the Advancement of Science, 1987
American Statistical Association, 1983

Institute of Mathematical Statistics, 1983

. Royal Statistical Society, England, 1974

and also was elected

5. Member of International Statdstical Institute, 1987.

S

P.B4/04

TOTAL P.b4




